\begin{tabbing} $\forall$\=$D$:Dsys, ${\it sched}$:(Id$\rightarrow$(?($\mathbb{N}\rightarrow$(IdLnk + Id)))), $v$:($i$:Id$\rightarrow$M($i$).(timed)state),\+ \\[0ex]${\it dec}$:($i$,$a$:Id$\rightarrow\mathbb{N}\rightarrow$M($i$).state$\rightarrow$(?if $a$ $\in$ dom(M($i$).prob) then Outcome else Void fi )), \\[0ex]${\it discrete}$:(Id$\rightarrow$Id$\rightarrow\mathbb{B}$). \-\\[0ex]Feasible($D$) \\[0ex]$\Rightarrow$ d{-}feasible{-}discrete($D$;${\it discrete}$) \\[0ex]$\Rightarrow$ ($\forall$$i$, $x$:Id. ($\uparrow$(${\it discrete}$($i$,$x$))) $\Rightarrow$ constant\_function($v$($i$,$x$);$\mathbb{Q}$;M($i$).ds($x$))) \\[0ex]$\Rightarrow$ \=($\forall$$i$:Id.\+ \\[0ex](\=$\forall$$l$:IdLnk.\+ \\[0ex](destination($l$) = $i$) \\[0ex]$\Rightarrow$ ($\uparrow$M(source($l$)) sends on link $l$) \\[0ex]$\Rightarrow$ \=(($\uparrow$isl(${\it sched}$($i$)))\+ \\[0ex]c$\wedge$ \=($\forall$$t$:$\mathbb{N}$.\+ \\[0ex]$\exists$\=${\it t'}$:$\mathbb{N}$\+ \\[0ex](($t$ $\leq$ ${\it t'}$) \& (($\uparrow$isl(outl(${\it sched}$($i$))(${\it t'}$))) c$\wedge$ (outl(outl(${\it sched}$($i$))(${\it t'}$)) = $l$)))))) \-\-\-\-\\[0ex]\& (\=$\forall$$a$:Id.\+ \\[0ex]$a$ in dom(M($i$).pre) \\[0ex]$\Rightarrow$ \=(($\uparrow$isl(${\it sched}$($i$)))\+ \\[0ex]c$\wedge$ \=($\forall$$t$:$\mathbb{N}$.\+ \\[0ex]$\exists$\=${\it t'}$:$\mathbb{N}$\+ \\[0ex](($t$ $\leq$ ${\it t'}$) \\[0ex]\& (($\uparrow$($\neg_{b}$isl(outl(${\it sched}$($i$))(${\it t'}$)))) c$\wedge$ (outr(outl(${\it sched}$($i$))(${\it t'}$)) = $a$))))))) \-\-\-\-\-\\[0ex]$\Rightarrow$ FairFifo \end{tabbing}